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Diffusion limited cluster-cluster aggregation in two dimensions has been studied both experimentally and in
computer simulation. In both cases the structure function at late times exhibits hitherto unsuspected sixfold
symmetry. The triangular structure of the system in real space is not very pronounced, resembling the local
order of a liquid. The six peaks in the structure function lie at the wave number of the characteristic spatial
modulation previously found for this system. It is argued that both phenomena arise due to mutually exclusive
depletion zones which form around clusters in diffusion limited aggregation, providing an effective long-range
intercluster repulsion.@S1063-651X~96!03906-2#

PACS number~s!: 82.70.2y

I. INTRODUCTION

Spatial or temporal pattern formation is a common feature
of systems driven far from equilibrium@1,2#. Such self-
organization has been observed in systems ranging from the
physical to the biological, including oscillatory chemical re-
actions@3# and brain activity@4#. However, apart from such
limiting cases as periodic lattices and entirely random struc-
tures, spatial pattern or order is not readily describable@1#.
Symmetry provides a useful measure in at least some cases.
We have discovered, surprisingly, that hexagonal symmetry
spontaneously forms in certain cases of random colloidal ag-
gregation. In this example of pattern formation order
emerges in competition with the growth of irregular, fractal
structures, which is more commonly associated with thede-
structionof order far from equilibrium@1#.

The aggregation of small particles to form large clusters is
a process of fundamental interest in many diverse branches
of science, and has long been an active area of scientific
interest. We have studied cluster-cluster aggregation in two-
dimensional~2D! systems both experimentally@5–7# and by
computer simulation. The experimental system comprises
electrically charged, micrometer-sized polystyrene spheres
trapped on the surface of water. Addition of salt to the sub-
phase screens the charge so that the particles can approach
close enough for van der Waals attraction to cause appar-
ently irreversible bonding. Two-dimensional colloidal sys-
tems have several attributes that make them particularly use-
ful. They provide an experimentally convenient approach to
a two-dimensional system, in which, in principle, the inter-
particle interactions can be modified to cause either reaction
limited cluster-cluster aggregation~RLCA!, in which the
probability of two particles bonding on contact is signifi-
cantly less than 1, or the diffusion limited case~DLCA!, in
which this probability is essentially unity. Particular advan-
tages for the present work include: the high density limit of
cluster-cluster aggregation can be realized and studied more
easily than in three dimensions, phase separation under the
action of gravity is precluded, and the aggregates are less

liable to mechanical instability induced by bending or hydro-
dynamic stress.

Most recent studies of aggregation, influenced by the
ideas of fractal geometry, have concentrated on the structure
of the clusters@8# and on the kinetics@9#. However, in the
case of diffusion limited cluster-cluster aggregation certain
recent studies@10–12# have revealed the emergence of col-
lective aspects of the system, implying the existence of in-
tercluster spatial order in these nonequilibrium systems. This
order manifests itself in scaling or stationarity of various
properties of the system throughout aggregation@13,14#. The
underlying intercluster order, which extends beyond the
scale of the fractal clusters, arises from self-organization due
to interactions between the growing clusters. In this paper we
report aspects of this order, revealing the spontaneous break-
ing of rotational symmetry by this self-organization.

The principal results presented here derive from the ex-
perimental study. They are, however, supported in essen-
tially every respect by the simulations, data from which are
touched on briefly. The paper is organized as follows: the
next section summarizes the methods used in both experi-
ment and simulation, Sec. III presents the data and argues the
reality of the effects observed and in Sec. IV we discuss the
mechanism underlying the observed order, draw an analogy
with local order in liquids, and connect the present results
with various other aspects of the system studied.

II. METHODS

A. Experiment

Our experimental methods have been described in full
elsewhere@5#. In brief, polystyrene latex spheres of diameter
1.0960.08 mm were spread on the surface of an aqueous
subphase, where they remained securely trapped. They are
highly charged and interact via long-range electrostatic
forces @15#. Adding salt ~CaCl2) to the subphase induced
aggregation, which proceeded to gelation over times of the
order of 2–3 h. Times were measured from the initiation of
aggregation by addition of salt to the aqueous subphase. Im-
ages (7683512 pixel2, 0.95 mm/pixel! were grabbed at
various stages~usually every 15 min! throughout aggregation
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for subsequent analysis. Such sequences of images represent
quasirandomly selected samples, due to some mobility of the
colloidal monolayers@5#.

Monolayer area fractions (f) were rather high, typically
'0.1. For much lowerf aggregation took many hours, dur-
ing which the aqueous subphase evaporated, so changing the
salt concentration and thus the aggregation conditions. At
much higherf it was difficult, if not impossible, to form a
homogeneous monolayer during the spreading process. We
have thus explored only a modest range of area fractions; in
comparable stages of aggregation in all experiments the phe-
nomena were similar.

A typical monolayer comprises;53107 spheres, so that
finite size effects should be negligible for the system as a
whole. Typically, each micrograph contains some 105 par-
ticles. While this number is reasonably large, the statistics of
present interest relate to the cluster numbers, which are much
smaller.

B. Simulation

The computer simulations used a 2D square lattice
(102431024), with periodic boundary conditions. Particles
~of size one lattice square! were placed at randomly chosen
lattice sites. The number of particles was determined by the
required area fraction, here taken as 0.1 to be comparable
with the experimental values. If any two or more of the ini-
tial lattice sites occupied by particles were adjacent, these
particles were joined to form a cluster. After this initializa-
tion, the aggregation process was started. Particles or clusters
were chosen at random and moved by one lattice step in a
randomly chosen direction. The diffusion coefficient was
thus taken to be mass-independent; the results to be de-
scribed are not affected by this assumption, but the simula-
tions ran significantly faster. If such a move brought two
particles or clusters into contact the two were joined rigidly
and the combined object subsequently moved as a single
cluster. Time was incremented by 1/N(t) at each move,
N(t) being the total number of separate objects~monomers
and clusters! in the system at timet. The simulations were
run until gelation.

III. RESULTS

We present representative experimental data before
briefly considering results from computer simulations.

A. Experimental study

Above a critical CaCl2 concentration (;0.5M ) the struc-
ture of the fractal clusters resembled that expected for diffu-
sion limited cluster-cluster aggregation@5#. Below this con-
centration the cluster structure corresponded to the reaction
limited case. In both cases the growth kinetics showed a
crossover from slow to rapid aggregation as time progressed
~Fig. 1! @6#. The DLCA-like fractal scaling at high CaCl2
concentrations only appeared after this crossover@7#. We
restrict ourselves to discussion of the phenomena at high salt
concentrations, and specifically the DLCA situation.

Figure 2 shows a typical sequence of binary images of the
aggregating colloidal monolayer for a particular experiment.
The center 5123512 portion of the binarized images was

analyzed to provide the structure function~or, in image
analysis terms, the power spectrum! of the monolayer:

S~q,t !}U E r~r ,t !eiq–rdrU2, ~1!

wherer(r ,t) is the local density. The two-dimensional struc-
ture function was azimuthally averaged to giveS(q,t). The
absolute magnitudes of the computedS(q,t), while similar,
were slightly different for individual images because of the
statistical variations in the number of particles present. We
thus normalized the structure functions to a common value at
an arbitrary large value ofq (3.88 mm21), beyond the
range of interest.

Under the present aggregation conditions the particle den-
sity in the system is modulated by a particular wavelength
@12#. Figure 3 shows the angularly averaged structure func-
tions for the experiment corresponding to Fig. 2. The princi-
pal feature of these functions is the peak~ring in 2D! which
is present~at wave numberqm) at all times. The fractal scal-
ing in S(q,t) is only apparent aboveqm , which thus corre-
sponds to a characteristic distance beyond which the fractal
scaling breaks down. In the DLCA regime~i.e., after the
crossover at 45 min! the structure functions scale as

S~q/qm ,t !5qm
2d~ t !F~q/qm!, ~2!

where the exponentd equals the fractal dimensiondf , and
the functionF(q/qm) is a time-independent function whose
character continues to excite discussion@16,17#. Similar re-
sults have been reported for dense colloidal suspensions in
three dimensions@10#. As has been pointed out by Carpineti
and Giglio @10#, a scaling exponent equal todf is trivially
necessary if the fractal power-law decay ofS(q,t) at
q.qm is to be preserved. Such scaling has more generally
been associated with the late stages of spinodal decomposi-
tion @18#, where the exponentd is just the dimensionality of
the space in which the system is embedded.

FIG. 1. The number of clusters within the micrographs at vari-
ous times after initiation of aggregation in an experiment on a
0.73M CaCl2 subphase. Note the crossover from slow to rapid
growth at about 45 min.
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The angular averaging ofS(q,t) as shown in Fig. 3 con-
ceals a rather remarkable feature of the 2D structure func-
tion. Figure 4 shows a 3D representation ofS(q,t) in the
scaling regime~at 75 min!, before azimuthal averaging. Here
and elsewhere the spike atq50 has been suppressed for
clarity and the image has been smoothed to reduce noise.
The ring atqm corresponding to the peak of Fig. 3 is clearly
apparent. However, on top of this ring hexagonal structure is
evident. The random aggregation process thus spontaneously
leads to broken symmetry: the rotational isotropy of the
plane is reduced to triangular symmetry.

In particular, in the late, rapid stages of aggregation on
high molarity substrates, where DLCA structures are appar-
ent and whereS(q,t) scales as Eq.~2!, the two-dimensional
structure functionS(q,t) develops six small peaks symmetri-
cally disposed upon the ring atqm @Figs. 5~b,c!#. This sixfold
structure inS(q,t) is readily apparent for micrographs taken
between 60 and 90 min. Fort<45 min it is absent, appar-
ently having not yet developed. For times later than those
illustrated in Fig. 5~data not shown! the small peaks decay
in magnitude until eventually they are not apparent, as the
ring in S(q,t) shrinks to lowqm and becomes noisy~due to
the small number of clusters!, making it difficult to discern
such detailed structure.

The angular autocorrelation functions@c(u)# of the struc-
ture functionsS(q,t) for q5qm ~evaluated from the angu-
larly averaged structure functions of Fig. 3! were computed.
These autocorrelation functions, shown in Fig. 6 for the
cases of Fig. 5, confirmed that hexagonal structure appeared
at that time at which scaling ofS(q,t) set in, thereafter
gradually decaying into the noise. The obvious dipole char-
acter of S(q,t) at 45 min is apparent in Fig. 6, whereas
c(u) for 60 min is almost purely hexapolar@the remnant
dipole structure apparent in Fig. 5~b! occurs atq,qm and
hence does not affectc(u)#. By 75 min the hexapolar com-
ponent is less pronounced, but it is still significant~a quad-
rupole component of comparable amplitude is also present!.

The tendency in real space to form a triangular lattice is
not strong: the integrated volume under the peaks ofS(q,t)

must be much less than that under the ring asqm . While the
most probable wavelength of the density modulation
(2p/qm) is apparent in the micrographs~see the roughly
equally spaced clusters of Fig. 2!, the weakness of the trian-
gular lattice makes it difficult to perceive any corresponding
structure. Such hexagonal symmetry has never, to our
knowledge, been reported before in experiments or computer
simulations of cluster-cluster aggregation. Various lines ar-
gue strongly against it being an experimental artifact; we
briefly review these.

These features ofS(q,t) are reproducible: they appear in
all experiments for CaCl2 concentrations above 0.5M , and
in none of those below this concentration, suggesting their
reality. Among possible causes of artifacts which we believe
are eliminated is the residual mobility of the surface noted
above, which leads to the recorded micrographs being qua-
sirandomly selected portions of the monolayer. The sixfold
symmetry seems not to be an artifact of the image process-
ing: it is absent from early images and the orientation of the
symmetry axes varies from image to image. Further, it seems
unlikely that such features ofS(q,t) could result from statis-
tical fluctuations in the system.

This question of fluctuations can be considered more
quantitatively, on the assumption that intercluster effects un-
derlie the hexagonal structure ofS(q,t). A single random 2D
fractal will not be exactly circularly symmetric~indeed
cluster-cluster aggregation is known to form anisotropic
clusters@19#! and so its structure function must have extinc-
tions at certain angles and hence angular intensity variations
of order 100%. IfN such clusters contribute to the total
observedS(q,t) then, assuming incoherent addition of the
scattering due to individual clusters, one would expect angu-
lar fluctuations of order 1/AN. To be accepted as significant,
the magnitudes of the peaks of Fig. 4 should considerably
exceed this value.

The number of clusters contained within the central
5123512 pixel portions of the micrographs@used in comput-
ing S(q,t)# are tabulated in Table I for various times, to-
gether with the consequent expected magnitude of the fluc-

FIG. 2. Video micrographs of an aggregating monolayer of 1mm polystyrene spheres on the surface of an aqueous 0.73M CaCl2
solution. The images are 7683512 pixels2, one pixel[0.95 mm. The images correspond tot560 ~a!, 75 ~b!, 105 ~c!, and 135 min~d!.
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tuations ofS(q,t), as well as the relative size of the observed
peaks. It is apparent that the observed peaks at 60 and 75 min
are statistically significant. As expected, the significance falls
as time progresses and the cluster statistics become poorer.
We believe that it is the concomitant increase in the inherent
fluctuations which inhibits the observation of any traces of
sixfold symmetry inS(q,t) at times greater than 90 min in
the present experiment. We further note that statistical fluc-
tuations would not lead naturally to the symmetry evident in
the sixfold peaks observed in our experiments and simula-
tions.

B. Computer simulation

Although some relatively minor differences were appar-
ent, the results of the simulations of 2D cluster-cluster ag-
gregation~DLCA! were in general accord with the experi-
mental results. In particular, as aggregation proceeded, a ring
developed inS(q,t) which showed scaling behavior as Eq.
~2! at later stages~cf. @20#!. In the scaling regime sixfold
structure inS(q,t) was apparent atqm . Figure 7 shows the
central 5123512 portion of the system at a relatively early
stage in the simulation, together with a map ofS(q,t) ~com-
puted from the whole 102431024 system! which clearly

shows the ring and the hexagonal symmetry. Most of the
comments regarding the reliability of the experimental obser-
vations apply to the results of the simulations. In particular
the features noted were observed for all simulations of
DLCA, but not for RLCA. Further, the six symmetrically
disposed peaks on the ring inS(q,t) were again statistically
significant ~over 10 standard deviations in some cases!.
Again, as in the experiments, the peaks faded into statistical
insignificance as time progressed and the cluster numbers
fell.

The main difference between simulation and experiment
was the much earlier appearance of scaling and sixfold sym-
metry inS(q,t). Whereas in the experiments these features
did not appear until the clusters became comparable in size
with their separation, in the simulations the clusters were
smaller than their separation at the onset of scaling. We be-
lieve that this difference arises from experimental problems:
experimentally the particle-particle reaction kinetics were al-
ways reaction limited@6#, a crossover to DLCA only occur-
ring when large clusters formed, the increasing number of
potential points of contact causing the probability of cluster-
cluster bonding on contact to approach unity@7#. Scaling of
S(q,t) only occurs for DLCA, and so cannot occur experi-
mentally until after this crossover. However, in the simula-
tions the aggregation is diffusion limited from the start. As
will be discussed below, scaling occurs when effective inter-
cluster repulsions appear, leading to correlations. This occurs
relatively earlier in the simulations.

IV. DISCUSSION

In the following, we largely concentrate upon the experi-
mental situation, considering the simulations only where dif-
ferences arise. We believe that these differences are of de-
gree only, not of principle.

A. Mechanisms

What is the origin of the sixfold symmetry? Experimen-
tally, the most obvious hypothesis would ascribe it to rem-
nant electrostatic repulsion between clusters, due to inad-
equate screening by Ca21 in the subphase. This explanation
is untenable. Such repulsion would be stronger for lower salt
concentrations, under which conditions RLCA is found@5#.
However, the sixfold structure on the ring inS(q,t) is only
observed athigh salt concentrations, i.e., for DLCA@5#. Fur-
thermore, there is no repulsive interparticle potential in the
simulations, yet the hexagonal structure emerges here, too.

FIG. 3. The structure functions computed from the central
5123512 pixel portions of the micrographs, for the entire aggrega-
tion process, from 5 to 165 min, vertically displaced for clarity~ex-
cept those in the gelling state!. The dotted line indicates the power
law scaling expected for DLCA (df51.44); it clearly parallels the
experimentalS(q,t) over part of theq range. Peaks@rings in
S(q,t)# occur at all times, atq values designatedqm . As time
progressesqm falls.

TABLE I. The cluster numbers (N) and expected statistical
fluctuations, expressed as a percentage of the magnitude of
S(q,t), together with the measured relative amplitudes of the six-
fold peaks in the structure function.

Time N Noise Amplitude
~min! ~%! ~%!

45 3436 1.7
60 1978 2.2 7
75 670 3.9 13
90 181 7.4 5
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Thus the sixfold structure inS(q,t) and the scaling of the
structure function arise from spontaneous self-organization
in the system.

Initiation of aggregation quenches the system into a non-
equilibrium state. It is well established that, even in a steady
state, macroscopic spatial patterns~dissipative structures!
may emerge in such nonequilibrium systems@1,2#. The
quench can be regarded as pushing the system over a thresh-
old above which it is unstable to infinitesimal perturbations.
Spatial structure then appears centered on the most unstable
wave number,qm , apparent here in both the ring ofS(q,t)
and the sixfold structure. The six peaks lie atqm , and so are
linked to the spatial modulation of the density with that wave
number. The temporal evolution of the system causes the
steady decrease inqm evident in Fig. 3.

Two possible general mechanisms for pattern formation
can be considered@2#, arising either from a conservation law
or from competing interactions between elementary units.
The present system apparently involves a crossover between
the two. In particular, it appears@14# that the ring atqm
arises from different processes at early times and in the scal-
ing regime. We briefly summarize the evidence which has
led us to identify the mechanism in the latter regime
@12,14,21#.

qm must relate to some characteristic length scale. From
our two-dimensional images we can directly determine the
two relevant length scales characterizing our aggregating
monolayers@14#: the average cluster size and separation. We
estimate the former as twice the average radius of gyration of
the clusters, 2̂Rg&, the latter as the average separation be-
tween the cluster centroids,^x& ~both averages taken as me-
dians to avoid problems of outliers and skew distributions!.
Both length scales are well characterized, as DLCA involves
relatively monodisperse clusters uniformly spread through-
out the system@22#. The variations of these lengths with time

are shown in Fig. 8. It is apparent that, whereas initially we
have small clusters which are comparatively widely sepa-
rated, after 60 min we have large clusters which are rather
closely packed. Indeed, just before gelation the average clus-
ter size (;400 mm! greatly exceeds the cluster separation
(;55 mm!.

How doesqm correlate with these length scales? Figure 8
includes the characteristic length scale of the density modu-
lation in the system (2p/qm), enabling comparisons to be
drawn ~see also@21#!. At early timesqm is close to 2̂Rg&:
the ring inS(q,t) is here due to growth of clusters at the
expense of the monomer population, the lowq fall off inside
the ring arising from the finite cluster size. Thus the ring
arises from mass conservation@23#. In DLCA cluster growth
leads to the formation of depletion zones around the aggre-
gates. These become larger as smaller clusters disappear by
continued aggregation, eventually becoming comparable in
size with the cluster separation@10,12#. The depletion zones
are mutually exclusive, forcing a most probable length scale
on the system, so that at later times (t>60 min! qm is deter-
mined by the intercluster separation,^x&. While mass is still
conserved, the driving force generating the structure atqm is
now the competition between these mutually exclusive
depletion zones. As the structure coarsens through cluster
growth, smaller clusters act as defects within the new, evolv-
ing pattern@cf. Fig. 2~b!#. Due to their relatively easy diffu-
sion, they disappear by being mopped up by larger clusters,
causing the structure to evolve into that appropriate to a
larger cluster-cluster separation. The scaling ofS(q,t) as Eq.
~2! arises from this self-organizing tendency of the depletion
zones.

Scaling thus arises from effective intercluster interactions
which spontaneously arise when the cluster size is compa-
rable with, or greater than, the separation. Such interactions
emerge naturally in DLCA: growth leads to mutually exclu-
sive depletion zones around the clusters which provide an
effective intercluster repulsion. It is these repulsions which
lead to spatial correlations as the system evolves to an over-
all structure comprising nearly equally spaced fractal clus-
ters.

The hexagonal structure appears in the scaling regime and
at qm , being a higher-order consequence of the self-
organization which causes the scaling. The hexagonal sym-
metry depends upon development of depletion zones around
the clusters. When small clusters are widely separated they
exert no influence upon each other. Only when the structure
at qm is driven by competition between the clusters do the
latter interact to impose order: large close-packed clusters
must behave in a coherent fashion. Whenqm52p/^x& the
depletion zones around the clusters are evidently space-
filling. In the absence of any symmetry-breaking influence
such as gravity, their mutually exclusive character, acting in
a plane, will then lead to a tendency for the basic entities
~here clusters! to form a triangular lattice. One may think of
optimally packed disks forming a triangular lattice. While
softening the hard-disk interaction will reduce the global or-
der of such a structure, it will not totally destroy it, particu-
larly locally ~see below!.

Turning briefly to the results of the simulations, we recall
that, in contrast to the experimental situation, scaling and the
sixfold symmetry here appear while 2^Rg&,^x&. However,

FIG. 4. A perspective view ofS(q,t) for the micrograph at 75
min @Fig. 2~b!#. The scales are arbitrary;qx and qy run from
23.29 to 3.29mm21. The ring atqm is clear, as are the six peaks
at thatq.
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the phenomena are still due to the mutually exclusive nature
of the depletion zones around the clusters, characteristic of
DLCA. Scaling and sixfold order inS(q,t) can only occur
when the aggregation is diffusion limited and the average
diameter of the depletion zone is comparable with the cluster
separation. The first condition shows why, experimentally,
sixfold peaks only appear at the onset of the rapid growth
phase: before that point the growth is basically reaction lim-
ited @7#. While DLCA is the intrinsic mechanism of aggre-
gation in the simulations, depletion zones of the order of the
cluster separation must also be present for local order to
appear. The rms distance diffused by particles or clusters by
time t is ;A2Dt. At the very earliest times the depletion
zones must be of small radius: sixfold order and scaling of
S(q,t) can only arise ast increases tô x2&/2D. This esti-
mate exactly agrees with results from the present simula-
tions.

It has been suggested@16# that structure function scaling
in colloidal aggregation implies a progressive ‘‘hardening’’
of the radial distribution function of the clusters~i.e., a ten-

dency towards a step function!. We do not observe this. Fig-
ure 9 shows pair correlation functions of the centroids of the
clusters, in the scaling regime of the experiments. The func-
tions are scaled laterally bŷx& and vertically to equal depths
at the minimum to facilitate comparison. Despite the rather
large fluctuations evident at the later times, they clearly su-
perimpose essentially exactly, indicating that the shape of the
effective intercluster potential remains constant through the
scaling phase of the aggregation process.

B. Local order

The appearance of local order in the regime in which
S(q,t) scales is comprehensible in terms of the mechanism
sketched above. For objects in a plane, an effective repulsive
intercluster potential which is of long range will lead to a
triangular organization of the objects. For a purely nearest-
neighbor interaction, as here, and for a relatively ‘‘soft’’ po-
tential this organization will be relatively weak, as observed:

FIG. 5. Maps of the central region of the two-dimensional structure functionsS(q,t) for various micrographs:~a! for t545 min; ~b! for
60 min; ~c! for 75 min. ~For these maps the image is adjusted to use the full grey scale.!
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the intercluster separation is quite well-defined, but the local
tendency to a triangular structure is not strong, as noted in
Sec. III.

Such local quasicrystalline order is known from liquids.
For a liquid the conventional diffraction pattern resembles a
Debye-Scherrer ring, at a radius governed by the particle-
particle separation, reflecting the global disorder of the sys-
tem. However, if the diameter of the illuminating beam is
systematically reduced, a point is reached at which peaks
appear at points corresponding to the crystalline lattice. In
this situation the beam is illuminating, and so scattering oc-
curs from, a single domain~or at most a very few! over
which local order persists. Ackersonet al. @24# have beauti-
fully demonstrated this point for a colloidal liquid. As their
sample was progressively moved nearer to the focus of the
illuminating laser beam, rather noisy but clearly apparent
peaks appeared. The key point is that the solid and liquid
states had similarlocal structures and densities, differing in
that the defects in the liquid phase led to global disorder and
a global density lower than in the solid.

We believe that the present systems comprise such a 2D
liquid phase, with clusters as ‘‘atoms.’’ In such a phase in-
tercluster order can only be expected when the range of the
intercluster interaction is comparable with the cluster sepa-
ration, as found here.

Is the local order a consequence of the fractal nature of
the clusters, or the other way around? Order can only arise in
a coarsening process when the range of influence of the in-
dividual entities is of the order of their mutual separation. In
the absence of real long-range forces, this implies that the
clusters can exert an indirect long-ranged influence on each
other. Experimentally this only occurs when they have
grown to be larger than their average separation; in the simu-
lations, when the diffusion distance scale exceeds this sepa-

FIG. 6. Angular autocorrelation functions ofS(qm ,t) for 45
~continuous line!, 60 ~long dashed!, and 75 min~short dashed! u is
in degrees. See text for discussion.

FIG. 7. Typical results from computer simulations.~a! The cen-
tral 5123512 portion of a 102431024 system undergoing DLCA.
~b! The map of the central part ofS(q,t) corresponding to the
whole system (d is the lattice constant of the real space system!.

FIG. 8. Characteristic length scales for the experiment, as func-
tions of time:^x& (s), 2^Rg& (3), and 2p/qm (d). The point! at
120 min derives from the inside of the depletion zone in the gelled
state@21#.
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ration. The clusters are, however, fractal both before and
after the onset of scaling, that is the crossover to rapid ag-
gregation@7#. It is evident that the order discussed here is a
direct outgrowth of the fractal nature of the aggregates; the
size of compact quasicircular objects can never exceed their
center-to-center separation.

C. General

In previous publications@13,14# we have discussed vari-
ous scaling aspects of the present experimental systems, in-
cluding topological and metrical properties of the ensemble
of clusters. Some of these might be thought to relate to the
present results, and so we briefly discuss several points.

A starting point is consideration of the nearest-neighbor
clusters. The distribution of the numbers of nearest neighbors
(n) is relevant to the question of order.

We first note that the clusters formed in DLCA do not
form a random spatial distribution of points in the plane: the
second central moment ofP(n), m2 , is significantly less
(;1.25 for DLCA @13,14#! than that of such a random array
(51.84 @25#!. This confirms that there is some degree of
intercluster order in the DLCA system. We further note that
m2 for DLCA does not evolve with time@13,14#, whereas the
sixfold order does develop as time progresses.

We emphasize that the tendency of objects~here clusters!
in a plane to have, on average, six nearest neighbors in no
way underlies the present reduction in rotational symmetry.
The sixfold structure ofS(q,t) relates to the spatial distribu-
tion of the clusters in the plane, whereas Euler’s theorem
@26# demands that the mean coordination number of a 2D
array of pointsmustequal 6, irrespective of that distribution.
The two facts thus cannot be connected. However, the ex-
perimentalP(n) do peak quite strongly atn56, @14# which
might be interpreted as underlying the sixfold symmetry. But
this is also true for RLCA@14#, for which case we never
observe scaling or sixfold symmetry inS(q,t). Further,
P(6) is, within uncertainties, constant throughout the DLCA
process, whereas the sixfold peaks ofS(q,t) only appear at a
time whenS(q,t) starts to scale. We conclude that the sym-
metry breaking is not associated with a mean or modal
n56.

Figure 10 shows a micrograph for whichS(q,t) exhibited
sixfold symmetry and the corresponding Voronoi diagram,
partitioning the plane into areas~called cells! closer to a
given point than to any other point in the system@26#. In the
present context ‘‘points’’ are cluster centroids, and the num-
ber of sides of a Voronoi cell equals the cluster coordination
number. Cells with six sides are shaded for emphasis: in 2D
defects correspond tonÞ6 @27#. It is clear that the ordered
regions indicated by the shaded cells are neither extensive
nor very correlated, confirming that such topological order
cannot underlie the present metrical order.

Finally, it might be thought that sixfold symmetry in
S(q,t) should be associated with significant bond-
orientational correlations. We believe that this is not so. Such

FIG. 9. Pair correlation functions for centroids of clusters in the
experimental images, after the onset of scaling~times as legend!.
r is scaled bŷ x&, and the functions are normalized to a common
minimum value.

FIG. 10. An illustration of the topological order for a typical
DLCA micrograph~75 min!: original image~a! and the correspond-
ing Voronoi diagram~b!, in which the points indicate the centroids
of the clusters.

FIG. 11. The distribution of the bond-orientational order param-
eter uc6u for the experimental image at 60 min~statistics are worse
at later times!. See text for discussion.
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order is defined via a bond-orientational order parameter,
defined for clusteri located atr i as @28#

c6~r i !5(
j
ei6u i j , ~3!

whereu i j is the angle of the ‘‘bond’’ between clusteri and
one of its j nearest neighbors~here simply the centroid to
centroid displacement!. For a perfect 2D triangular lattice
c6 is unity for all atoms, being spatially correlated over the
entire lattice. As the lattice meltŝuc6u& falls and the corre-
lation length decreases, particularly in the fluid state@27#. In
the 2D liquidP(uc6u) becomes broad, rather than being con-
centrated at.0.75, as in the solid@27#.

Figure 11 shows a typical example ofP(uc6u) determined
from the present experimental data. It is clearly very broad
indeed. Neither the distribution ofuc6u nor its average value
(;0.4) vary significantly with time. In particular, there is no
significant change at the onset of scaling and the appearance
of hexagonal structure inS(q,t). The observedP(uc6u)
clearly corresponds to a system which is far from a crystal-
line or hexatic state; long-range correlations ofc6 cannot be
expected, and are not found. The probability ofuc6u exceed-
ing 0.75, which approaches unity in a solid@27#, is;0.05 for
our system. This seems entirely consistent with theweak
local order implied by the small sixfold peaks inS(q,t).
However, the liquid state, which involves the absence of
both long-range translational and bond-orientational order is,
as we have seen, entirely consistent withlocal sixfold sym-
metry @24#.

V. CONCLUSIONS

It has been demonstrated that, both experimentally and in
simulations, diffusion limited cluster-cluster aggregation in
2D leads to local triangular order in the cluster positions. The
degree of this order is not large; the clusters appear to form a
2D liquid. The order arises at the same time as the
‘‘spinodal-like’’ scaling of the structure function sets in, and
at the sameq as the scaling peak in the structure function. It
is therefore apparent that this symmetry breaking is inti-
mately connected with the modulation of the density which
underlies the scaling. The two phenomena both originate in
the effective long-range intercluster repulsion due to the mu-
tually exclusive depletion zones surrounding each cluster in
DLCA.

The present results raise various questions. Does the six-
fold symmetry persist throughout the aggregation process, or
do the chaotic dynamics underlying the fractal structure fi-
nally dominate the self-organizing influences and destroy it?
If not, does the symmetry persist into the gelled state? Fur-
ther experiments~real or numerical! with better cluster num-
ber statistics are required to answer these and other ques-
tions.
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